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Abstract Opioid addiction has become a global epidemic and a national
health crisis in recent years, with the number of opioid overdose fatalities
steadily increasing since the 1990s. In contrast to the dynamics of a typi-
cal illicit drug or disease epidemic, opioid addiction has its roots in legal,
prescription medication - a fact which greatly increases the exposed popula-
tion and provides additional drug accessibility for addicts. In this paper, we
present a mathematical model for prescription drug addiction and treatment
with parameters and validation based on data from the opioid epidemic. Key
dynamics considered include addiction through prescription, addiction from il-
licit sources, and treatment. Through mathematical analysis, we show that no
addiction-free equilibrium can exist without stringent control over how opioids
are administered and prescribed, in which case we estimate that the epidemic
would cease to be self-sustaining. Numerical sensitivity analysis suggests that
relatively low states of endemic addiction can be obtained by primarily focus-
ing on medical prevention followed by aggressive treatment of remaining cases
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- even when the probability of relapse from treatment remains high. Further
empirical study focused on understanding the rate of illicit drug dependence
versus overdose risk, along with the current and changing rates of opioid pre-
scription and treatment, would shed significant light on optimal control efforts
and feasible outcomes for this epidemic and drug epidemics in general.

Keywords Population Biology · Dynamical Systems · Epidemiology ·
Compartmental Model · Mathematical Biology · Prescription Drug Addiction

1 Introduction

Starting in the mid 1990s, allegations arose that the medical field system-
atically under-treated pain, and the American Pain Society (a professional
organization) lobbied to have pain recognized as a 5th vital sign which, if
adopted, would require all physicians to accept and treat patient pain reports
- naturally leading to an increase in opioid prescriptions and increasing profits
for drug manufacturers (Zee, 2009; Mandell, 2016). Meanwhile, confounding
medical literature appeared suggesting that cancer patients using prescription
opioids to treat their chronic pain did not become addicted (Porter and Jick,
1980; Perry and Heidrich, 1982; Schug et al., 1992). One study found that
only one participant out of 550 developed an addiction to their prescription
painkillers (Schug et al., 1992). Another study found no cases of addiction
among 10,000 burn victims using prescription opioid drugs (Perry and Hei-
drich, 1982). With this data, it began to appear as though physicians could
safely prescribe opioids to those in chronic pain without fear of addiction.

By 2000, the Joint Commission began requiring that health care organi-
zations assessing and treat pain in all patients (Mandell, 2016). OxyContin
prescriptions for noncancer-related pain increased from 670, 000 in 1997 to
nearly 6.2 million in 2002 (Zee, 2009). This trend continued through the early
2000s, and in 2012, it was discovered that 259 million opioid prescriptions had
been written - enough for every adult in America to have at least one bottle
of pills (CDC, 2014). By 2014, almost 2 million Americans abused or were
dependent on prescription opioids (Hughes et al., 2016).

Unfortunately, the increase in opioid prescriptions has led to an increase
in opioid addiction and abuse, affecting all age demographics. Large quanti-
ties of unused prescription drugs are currently available in many prescribed
users’ homes (Bicket et al., 2017), and in 2015, 276, 000 American adoles-
cents were abusing painkillers for non-medical reasons (Hughes et al., 2016) -
many of whom obtained them from a friend or relative who had a prescription
(Twombly and Holtz, 2008; Han et al., 2017). In older age groups, regular,
long-term opioid use is more common (Campbell et al., 2010) with possibly
one in four long-term opioid users struggling with addiction (Boscarino et al.,
2010). Geographically, the opioid epidemic not only affects densely populated
areas, but hits rural areas especially hard as well (Keyes et al., 2014).

Misconceptions regarding prescription opioids make them especially dan-
gerous and include the following: (1) Since opioids are medically prescribed
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they are safe, (2) you cannot get addicted to prescription painkillers if taken
as prescribed, (3) a person is able to safely self-medicate for pain with opi-
oids, (4) only long-term use of certain opioids produces addiction (Twombly
and Holtz, 2008; Volkow and McLellan, 2016). The coupling of these miscon-
ceptions with the general availability of opioids makes this epidemic unlike
previous drug waves. To make matters worse, many opioid addicts switch to
heroin as a cheaper alternative to prescription opioids (Muhuri et al., 2013),
with estimates suggesting that as many as 4 out of 5 new heroin users had
abused prescription painkillers prior to starting heroin (Jones, 2013). This is
contrary to previous trends of addiction moving from heroin use to prescrip-
tion painkillers abuse in the mid-1950s (Hughes et al., 1972; Lankenau et al.,
2012).

As of October 26, 2017, the US Department of Health and Human Ser-
vices has declared the opioid crisis a public health emergency (Davis, 2017).
Yet despite the current seriousness and scale of the opioid epidemic, the need
for effective intervention strategies, and an abundance of literature on mathe-
matical epidemiology for infectious diseases, rigorous mathematical theory has
yet to be applied to opioid addiction as it has for other diseases. In fact, very
little has been published applying mathematical epidemiology to the prob-
lem of drug use in general. White and Comiskey (2007) published perhaps
the first such model, mathematically describing the heroin epidemic as a sys-
tem of differential equations resembling the classic SIR model of Kermack
and McKendrick (1927). Alterations of this model were subsequently studied
by several authors including Nyabadza and Hove-Musekwa (2010), Samanta
(2011), Huang and Liu (2013), Bin et al. (2015), and Ma et al. (2017), all
targeting heroin. In 2012, Njagarah and Nyabadza (2013) described a model
exploring the dynamics of drug abuse epidemics more generally, focusing on
the interplay between light users, heavy users, and rehabilitation. However, to
our knowledge no one to date has developed and analyzed a compartmental
differential equation model specifically for prescription opioids with the intent
of better understanding the dynamics involved. Since opioids are regularly
prescribed to a broad demographic segment of the population and addiction
can arise directly from medical prescription, we expect the dynamics of this
epidemic to be significantly unlike any purely illicit drug epidemic that has
been studied in the past.

In this paper, we investigate the dynamics driving the opioid epidemic by
formulating and analyzing an SIR-inspired model (Kermack and McKendrick,
1927; Anderson and May, 1979) based on White and Comiskey (2007) and
built specifically to study addiction to a general class of prescription drugs.
Our model includes multiple routes leading to dependency and addiction that
are specific to prescription medication, including a “prescribed” class that
both directly feeds the addicted population and contributes secondary cases
via unsecured or unused drugs. We then analyze the model for key proper-
ties and conditions that may lead to a meaningful reduction in the number
of addicted people and discuss our conclusions. Our results include a detailed
description of equilibrium solutions under different model-structure scenar-
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ios and extensive numerical analysis describing parameter sensitivity and 10
year projections under a large variety of realistic and hypothetical parameter
choices. We emphasize that the goal of this paper is to investigate broad trends
in prescription opioid addiction rather than localized interactions in order to
narrow down possible national strategies for arresting the epidemic long-term.
A discussion of our findings in this context is included in the Discussion and
Conclusion section.

2 Mathematical Methods

We begin by defining 4 population classes:

1. S (“susceptibles”): This represents the proportion of individuals who are
not using opioids or actively recovering from addiction. They may be pre-
scribed opioids at a fixed rate (α).

2. P (“prescribed users”): This represents the proportion of individuals who
are prescribed opioids but do not have an addiction to them. Members
have some inherent rate (γ) of becoming addicted to their prescriptions,
and a rate of finishing their prescription without addiction (ε).

3. A (“addicted”): This compartment represents the proportion of addicted
opioid users, regardless of if their drugs are prescribed. There are multiple
routes to this class in our model. One is prescription-induced (γ) addiction,
while two other routes from S do not go through the P compartment: one
based on interactions with addicted users or their dealers (βA) and another
based on the presence of opioid patients (βP ) in the form of unsecured or
extra drugs (Hughes et al., 2016). Addicted users enter treatment at rate
(ζ). Here, we define an addicted individual as someone exhibiting a pattern
of continued nonmedical use with potential for harm (Vowles et al., 2015).
We will assume throughout this paper that the term “pain reliever use
disorder”, which appears regularly in government reports (Hughes et al.,
2016), satisfies this definition and that persons who “misuse” prescription
opioids without further explanation do not satisfy the definition.

4. R (“rehabilitation/treatment”): This compartment represents the propor-
tion of individuals who are in treatment for their addiction. We include an
inherent, linear rate of falling back into addiction (σ) in contrast to White
and Comiskey (2007) who only allow for a nonlinear rate. Also different
in our model: members of the recovering class who complete their treat-
ment can return to being susceptible (at rate δ). We note that structurally,
this rate simply augments µR and so may also be thought of as an en-
hanced death rate for R (in the case that prior opioid addiction is related
to a higher mortality risk) or be set to zero without any drastic change
expected in the dynamics.
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Fig. 1 Opioid Model Schematic. A schematic diagram showing the relationships be-
tween all the classes in the compartmental model of opioid addiction given by Eqns. 1-4.
Red arrows denote death rates, which are passed back into S to maintain a constant pop-
ulation. The grey arrow represents nonlinear relapse rates which will be considered in an
expanded version of the model for analysis purposes.

The system is illustrated in Fig. 1 and is specified via four continuous-time
differential equations

Ṡ = −αS − βASA− βPSP + εP + δR+ µ(P +R) + µ∗A (1)

Ṗ = αS − (ε+ γ + µ)P (2)

Ȧ = γP + σR+ βASA+ βPSP − (ζ + µ∗)A (3)

Ṙ = ζA− (δ + σ + µ)R. (4)

where we set S + P + A+ R = 1 so that S, P , A, and R represent the mean
expected fraction of the population for each class. We note that Ṡ+Ṗ+Ȧ+Ṙ =
0 implies that S + P + A + R = 1 for all time, and positivity of the solution
set is assured because of the density-dependent decay terms: for each variable
S, P,A,R ≥ 0, S = 0 implies Ṡ = 0, P = 0 implies Ṗ = 0, etc. Taken together,
these facts bound each of S, P,A,R above by 1 and consequently, also below
by zero. Time t is understood to be in years, and all rates can be assumed to
be yearly rates.

This model assumes that any mortality due to opioid-related overdose is
insufficient to significantly change total population proportions (S, P , A, and
R), and all deaths are recycled back into the S class to maintain the relation
S + P + A + R = 1. Additionally, we attempt to simply the system by con-
sidering only a first-order addiction rate γP from the P class to the A class,
assuming that prescribed medication (perhaps from multiple doctors) is the
primary source of opioids for most of these users. Second order effects due to
mass action with A and P in the P → A route would likely also need to in-
clude feedback effects including a dynamic whereby large numbers of addicted
promote additional caution in the prescribed and susceptible class, and we felt
that this study was beyond the scope of a first model for prescription opioid
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addiction. In a departure from the approach taken by White and Comiskey
(2007), we assume that relapse from R to A would occur even in the absence
of other prescribed or addicted individuals at an intrinsic rate σ. As far as we
are aware, this is the first time such a linear rate has been considered in a
mathematical model of opioid or heroin addiction, and we will also consider
a case of the model (Eqns. 8-11) that includes mass action terms RA or RP ,
which may be considered to represent higher-order relapse effects.

In order to properly contextualize the epidemic model presented here within
the existing, heroin-addiction based literature, we note that our model differs
from the (White and Comiskey, 2007) model by initially replacing the non-
linear relapse term ν1RA with a linear one, and by adding a prescribed class
with numerous interactions with the other classes. Eqns. (8-11) build on this
model by adding nonlinear relapse terms, with the result that the model then
becomes a direct extension of (White and Comiskey, 2007) to prescription
drugs. In our analysis (Section 3.1), we will also consider various subsets of
these models purely for the purpose of better understanding the structure and
dynamics of the full model. These reduced models will be similar to (White
and Comiskey, 2007), but with the possibility of linear relapse and P acting
as something of a temporary holding state.

While the model is rich enough so that many of its submodels can have
interesting features, our main purpose here is to better understand the dy-
namics involved in a prescription drug epidemic as seen on a coarse, national
level. In particular, we will use data sourced from the literature to show that
prescriptions (as opposed to illicitly sourced drugs) appear to be the essential
driver behind the current opioid epidemic, and extensive numerical results will
identify key aspects of the model important for control efforts including a large
array of model projections based on data and numerous parameter regimes of
interest.

2.1 Model parameters

We estimated parameter values from the literature wherever possible with
the goal of focusing our attention on a neighborhood of likely values. These
estimations are given in Table 1. U.S. national-level data was used in all cases
as a matter of availability, with local municipality data being hard to acquire
if it is available at all. Our goal therefore is to demonstrate that our model
produces reasonable results in an approximately average scenario with social
and demographic stratification left as a matter for future work.

The 2017 CDC Annual Surveillance report states that in 2016, 19.1 out of
100 persons received one or more opioid prescriptions (CDC, 2017). As some
of these will have been continuing patients from the previous year, we assume
that α, our yearly rate of moving from S to P , is less than 19.1. We were
unable to find more specific data on this rate and so estimated that α = 0.15.
ε, the rate of ending opioid prescription use per prescription user-year, was
even more difficult to find data on. Most patients end opioid use in less than a
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month, while a smaller fraction can continue using opioid for over three years
(Shah et al., 2017). For this reason, we explored a range of values for ε from 0.8
to 8 representing a general belief that most users will quit using prescription
opioids in under a year if they have not become addicted.

Our prescription-induced addiction rate (γ = 0.00744) is based off of a
comprehensive review (Vowles et al., 2015) which sifted through many opioid
patient addiction studies of varying quality and methodology and found sig-
nificant variance in the addiction rates of prescription opioid users who had
been on their prescriptions for at least 90 days (95% confidence interval would
have a rate of approximately 0.057-0.169 in an unweighted collection of stud-
ies). Taking only the high quality studies and an average of the minimum and
maximum percents, we estimated that 9.3 percent of chronic, non-cancer pain
patients become addicted to their opioid prescriptions. Using data that 0.75 of
people using prescription opioids for 3 months go on to use for a year and that
0.06 of all initiates to prescription opioids use for a year (Shah et al., 2017),
we arrived at our value for γ as a rate for addictions per prescribed user-year.

We then derived an illicit-induced addiction rate (0.0036) based on the ra-
tio of physician-based sources of prescription opioids to other sources among
adults reporting prescription opioid use disorder (Han et al., 2017), and given
that the Substance Abuse and Mental Health Services Administration (SAMHSA)
suggests that 2.1 million people abused prescription opioids for the first time
in 2015 out of a population of 320 million (Hughes et al., 2016). Using this
same source data (Han et al., 2017), the illicit-induced rate was then subdi-
vided by differentiating the cases in which a user primarily obtains opioids
from friends, relatives, or other similar prescribed individuals (βP ) or from a
source related to general addictive demand (drug dealers) (βA). Based on this
data, we were able to estimate that 74% of users primarily obtain illicit opi-
oids from friends/ relatives/ other verses drug dealers or strangers, resulting
in βP = 0.00266 and βA = 0.00094. These parameter estimates are only meant
to be rough starting points for the purpose of basic analysis, particularly as
we expect these numbers to vary with both time and location.

The literature broadly suggests that approximately 90% of those entering
treatment relapse during the first year in recovery (Smyth et al., 2010; Bailey
et al., 2013; Weiss and Rao, 2017). Acute stage withdrawal lasts at most a few
weeks (Gossop et al., 1987), and studies on heroin addicts suggest that up to
70% of recovering addicts may relapse during the first month after treatment
ends (Smyth et al., 2010; Bailey et al., 2013). A study on US prescription opioid
addicts (no heroin) similarly found that 8 weeks after cessation of treatment,
only 9% had not relapsed (Weiss and Rao, 2017). We could not find published
data on 4 weeks post-treatment. While we assume that this rate would be
lower if the overall supply and demand of illicit drugs was reduced, it is hard
to tease out to what extent. Therefore, we took the timescale of recovery
and relapse to be approximately one year and made an estimate of 0.9 for
the base relapse rate σ, the estimated yearly proportion of R that relapse.
While this is certainly a very rough estimate that neglects nonlinear factors
such as temporally dependent stages of withdrawal, environmental effects, and
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Table 1 Estimated parameters for the opioid model (all rates per-capita yearly)

Description Est. Value Ref.
α prescription rate per person per

year
0.15 CDC, 2017

ε end prescription without addiction
(rate)

0.8− 8 Shah et al. 2017

βP illicit addiction rate based on P -
class

0.00266 Han et al. 2017; Hughes et al.
2016

βA illicit addiction rate based on A-
class

0.00094 Han et al. 2017; Hughes et al.
2016

γ prescription-induced addiction rate 0.00744 Vowles et al. 2015; Shah et al.
2017

ζ rate of A entry into rehabilitation 0.2–2
δ successful treatment rate 0.1 Weiss and Rao 2017
σ natural relapse rate of R-class 0.9 Smyth et al. 2010; Bailey

et al. 2013; Weiss and Rao
2017

µ natural death rate 0.00729 Kochanek et al. 2017
µ∗ death rate of addicts 0.01159 Gwira Baumblatt et al. 2014;

Hughes et al. 2016; Kochanek
et al. 2017; Seth et al. 2018

discrepancy in treatment methodology over both time and location, we believe
it to be a reasonable enough guess to serve as a gross estimate in this first
model. For completeness, we also examine the addition of both a ν1RP and
ν2RA relapse term to the model structure in Section 3 and Appendix A.4, but
with the note that the model was not sensitive to these terms compared to
σR (see Fig. 4) and that any estimation of the associated parameters is likely
to be extremely difficult from an empirical point of view.

To estimate µ∗, the overall death rate for prescription opioid addicts, we
started by making a rough estimate that 0.546 of all opioid deaths in the
United States are attributed to addicted persons based on (Gwira Baumblatt
et al., 2014). The prescription opioid death rate for the entire population is
estimated to be 5.2 out of every 100,000 people per year (Seth et al., 2018),
or 0.000052 deaths per person per year. We then used an estimate for the
number of people with a prescription drug use disorder contemporary to the
previous data (and an estimated US population of 300 million) to find the
rate of prescription opioid deaths for the addicted class (Hughes et al., 2016).
We then added the natural yearly death rate (obtained from Kochanek et al.
(2017) by discounting addiction-related opioid deaths), to arrive at a total
yearly death rate for the addicted class, e.g.

0.546 add. opioid deaths

1 opioid death
·
(

5.2 opioid deaths

100, 000 people

)
·
(

300× 106 people

2.0× 106 addicted

)
+

(
728.8 deaths− 0.546 · 5.2 add. opioid deaths

100, 000 addicted

)
= 0.01152

deaths

addicted · year
.
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Since µ and µ∗ represent continuous-time rates, we then assumed that A1 =
A0e

µ∗
where A1 = (1−0.01152)A0 and similarly for µ. Solving these equations

yields the values given in Table 1.

3 Results

The model was validated against national data for prescription opioid deaths
between 1999 and 2016 (Hedegaard et al., 2017). To estimate the proportion
of these fatalities that could be attributed specifically to addicted individuals
rather than misuse by others, we adopted the percentage of prescription opioid
deaths (54.6%) attributed to persons who had one or more high-risk factors,
such as greater than 4 prescribers, 4 different pharmacies, or a daily dosage
greater than 100 morphine milligram equivalents (MME) (Gwira Baumblatt
et al., 2014). Simulations were then carried out using the estimated parameter
values from Table 1 (see Fig. 2) and initial conditions chosen to approximate
the proportion of each model compartment class present in 1999 (see Appendix
A.1). In each simulation, we varied the rates of ending opioid prescriptions
without addiction (ε) and treatment initiation (ζ). The number of simulated
opioid related deaths were then found by computing pop(t) × (µ∗ − µ)A(t),
where pop(t) was computed by taking the US population between 1999 and
2016 and finding the best fit line through the data (U.S. Census Bureau:
International Database, 2018).

Each color in Fig. 2 corresponds to a particular ε value with ζ ∈ [0, 1].
Our model generally agrees with the data for over a range of ε and ζ values.
Additionally, we explored which combinations of α, ε, and ζ would exactly

Fig. 2 Model Validation. Time-series model results varying ε ∈ [2, 4.5] (colors) and
ζ ∈ [0, 1] (patch height) compared with prescription opioid death data from Hedegaard et al.
(2017) (yellow circles). Note that ζ = 0 at the top of each color patch with ζ increasing to
1 towards the bottom; this is illustrated in-figure for the ε = 2 case.
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predict the number of 2016 opioid overdose deaths attributed to individu-
als who are addicted. These relationships are found in Fig. 3. A few of the
points on the feasibility curves were also chosen to highlight population frac-
tions within realistic ranges. For example, when α = 0.05, ε = 0.30, and
ζ = 1.32, we find population fractions of S(2016) = 0.8518, P (2016) = 0.1353,
A(2016) = 0.0057, and R(2016) = 0.0072. Or when α = 0.25, ε = 5.40, and
ζ = 0.220, we predict population fractions of S(2016) = 0.9493, P (2016) =
0.0438, A(2016) = 0.0057, and R(2016) = 0.0012. Roughly 2 million Amer-
icans had a substance abuse disorder involving prescription opioids in 2016,
hence roughly 2× 106/300× 106 US Pop = 0.0066 of Americans were actually
addicted to prescription opioids, though this number is for the entire year.
Between 1998 and 2006, one estimation for P is that 2% of adults were taking
an opioid in any given week (Boudreau et al., 2009), so we might expect the
actual value for P to be somewhat greater than 0.02 in 2016.

Fig. 3 Model Validation. 2016 model results based on 1999 initial conditions for various
ε ∈ [0, 8], ζ ∈ [0, 5], and different choices of α that match prescription opioid death data
from Hedegaard et al. (2017). Three specific cases where the addicted class matches the
2016 literature-estimated value for opioid use disorder are highlighted.

3.1 Addiction-free equilibrium

Existence of an addiction-free equilibrium (AFE) is dependent on the condition
that α = 0 (in which case opioid prescriptions have ceased and the AFE is
given by P,A,R = 0 and S = 1), or γ = 0 and βP = 0 (in which case P can be
nonzero). With the latter condition, addiction can only occur through the black
market (represented in our model by demand from current addicts). It also
represents a special case of our equations that describes an illicit prescription
drug epidemic sub-model which would be applicable to any epidemic where
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the drug in question is available by prescription but prescribed users do not
become addicted to their drug or contribute in a meaningful way to its misuse
because of its general availability on the black market. In all cases, the AFE
is given by

S∗ =
ε+ µ

α+ ε+ µ
, A∗ = 0,

P ∗ =
α

α+ ε+ µ
, R∗ = 0.

(5)

Traditionally, the basic reproduction number denotes how many secondary
infections result from one infected individual within a population. When R0 >
1, the epidemic is expected to grow as more infections occur while for R0 < 1,
the number of infected individuals declines. This remains consistent in the
context of drug epidemics, where R0 can be understood to represent how
many addictions there will be in the next generation (year) compared to the
current one. Assuming that γ = 0 and βP = 0, R0 can be found using the next
generation method (Diekmann et al., 1990; van den Driessche and Watmough,
2002; Heffernan et al., 2005; Diekmann et al., 2010).

Remark 1 We mention here as a warning: the exact form of R0 one obtains
from the next generation method is dependent on whether or not certain classes
are to be considered “infected” when applying this method. In order to satisfy
all of the assumptions of the next generation method as described in (van den
Driessche and Watmough, 2002), with no further assumptions on parameters
(besides positivity) than γ = βP = 0, one must take both A and R as “in-
fected” classes with all others considered as “not infected.” Biologically then,
one should consider that those in recovery are still infected by addiction in
some way, with the potential to fall back into full blown addiction on their
own. However, they do not contribute to secondary cases. R0 is then the ratio
of new cases (caused by A) to the current number of cases, A+R.

In this case,

R0 =
βA(ε+ µ)

(α+ ε+ µ)(µ∗ + ζΛ)
=

βAS
∗

µ∗ + ζΛ

where Λ =
δ + µ

δ + µ+ σ
, S∗ =

ε+ µ

α+ ε+ µ
.

(6)

A derivation of this result is given in Appendix A.3 and is consistent with
spectral analysis. For parameter values estimated in Table 1, R0 ≈ 0.025 < 1,
and so in the absence of prescription-based primary and secondary addictions,
we strongly expect the opioid epidemic to die out on its own. This result
provides explicit mathematical backing to the idea that prescription opioid
addiction is primarily caused by medical prescriptions and over prescribing.

Another potentially surprising result of this calculation for R0 is that in-
creasing α, the rate at which opioids are prescribed to the general population,
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actually reduces R0 and can thus act as a control on the epidemic. This be-
havior is a result of the AFE-required assumptions that βP = 0 and γ = 0
(when α > 0): if no prescribed users can become addicted to their drugs and
their prescriptions do not cause other people to become addicted either, then
the prescribed class effectively becomes a safe haven from opioid addiction.
If this is altered by adding a βAPA pathway moving prescribed users to the
addicted class based on the number of addicted (e.g., from prescribed users
taking illicit drugs), then Eqn. 6 changes so that only βA is left in the nu-
merator. For expected parameter values, R0 still remains close to its original
value. In general, we have left this pathway out of our first model for pre-
scription opioid dynamics because it is higher-order in comparison to γP , and
since prescription opioids always contribute something to their users’ eventual
dependency, it is difficult to parse primary cause between prescription-based
usage and black-market based usage - especially when a prescription makes
acquiring opioids easier. In the hypothetical case that γ = 0, one would need
to examine the specifics of how γ = 0 was accomplished and what the impli-
cations are for prescribed users who may have a source of opioids on the black
market before modeling the dynamics.

Comparison of Eqn. 6 for our γ = βP = 0 sub-model to the form of
R0 found by White and Comiskey (2007) (Eqn. 7) in their model of a non-
prescription, heroin epidemic, the contribution of the linear relapse rate σR
and the addition of the P class to the dynamics become immediately apparent.
Specifically, in our equation for R0, α represents the contribution of the P -
class to the dynamics while σ represents the contribution of the R-class via
the linear relapse rate. Removing these pieces by setting α = σ = γ = βP = 0,
or by setting σ = γ = βP = 0 and adding a βAPA pathway from P to A (so
that P is essentially a second class of S), the AFE sub-model reduces to the
model of (White and Comiskey, 2007), giving us R0 = R0,WC .

R0,WC =
βA

µ∗ + ζ
(7)

Following the method described by Castillo-Chavez and Song (2004) with
βA as the bifurcation parameter when R0 = 1, we can show that a backward
bifurcation cannot occur in our model as described by Eqns. (1)-(4); the reader
is directed to Appendix A.4 for details. However, if we expand our model with
a nonlinear relapse term ν2RA, then a backward bifurcation becomes possible.

Consider the following system of equations with additional relapse terms
ν1RP and ν2RA,

Ṡ = −αS − βASA− βPSP + εP + δR+ µ(P +R) + µ∗A (8)

Ṗ = αS − (ε+ γ + µ)P (9)

Ȧ = γP + σR+ βASA+ βPSP + ν1RP + ν2RA− (ζ + µ∗)A (10)

Ṙ = ζA− (δ + σ + µ)R− ν1RP − ν2RA. (11)
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It is worth noting that this model is now a direct extension of White and
Comiskey (2007) as we use a nonlinear relapse rate of the same form. Calcu-
lating the basic reproduction number R0 using the next generation method,
we arrive at

R0,ext =
βA(ε+ µ)

(α+ ε+ µ)(µ∗ + ζΛ̃)
=

βAS
∗

µ∗ + ζΛ̃

where Λ̃ =
δ + µ

δ + µ+ σ + ν1P ∗ , S
∗ =

ε+ µ

α+ ε+ µ
,

so the addition of ν1RP contributes to R0 in a way similar to σ (but scaled
by P ∗), while the addition of ν2RA does not contribute to R0. The condition
for existence of a backward bifurcation is now

Λ̃Γ̃ ν2 > (1 + Γ̃ )(µ∗ + ζΛ̃+ Λ̃Γ̃P ∗ν1) (12)

where

Γ̃ =
ζ

δ + µ+ σ + ν1P ∗ .

Practically speaking, this implies that when Eqn. 12 is satisfied, a positive,
stable, endemic equilibrium exists simultaneously with the stable AFE, raising
the possibility that additional effort beyond achieving R0 < 1 may be required
to eliminate addiction. It is interesting to note that the possible existence of a
backward bifurcation is primarily driven by ν2; however, for parameter values
that we estimate to be realistic (see Table 1), such a bifurcation is unlikely to
occur. While it is feasible within our numerical analysis parameter ranges, it
requires minimal values for the parameters in Eqn. 12 other than ν2, especially
ζ. Of course, for the model given in Eqns. (1)-(4) where ν2 functionally equals
zero, it is not possible for a backward bifurcation to occur. With that said,
our suggested parameter ranges are only estimates, and it remains a distinct
possibility that a backward bifurcation occurs within biologically feasible pa-
rameter scenarios. However, we do not wish to overly dwell on analysis of the
AFE in this paper as γ = βP = 0 remains an unlikely special case of the
model, and therefore we leave exploration of a backward bifurcation for future
study.

3.2 Endemic equilibrium

Theorem 1 For the system in Eqns. (1)-(4) with S + P + A + R = 1;
µ, µ∗, βA > 0; and all other parameters non-negative, there exists an equi-
librium solution in the closed hypercube {0 ≤ S, P,A,R ≤ 1} given by

S∗ =
βA + (1 +Θ)K + γΘ(1 + Γ )−

√
(βA + (1 +Θ)K + γΘ(1 + Γ ))2 + 4K(βPΘ(1 + Γ )− βA(1 +Θ))

2(βA(1 +Θ)− βPΘ(1 + Γ ))

if βA(1 +Θ)− βPΘ(1 + Γ ) 6= 0 or

S∗ =
K

βA + (1 +Θ)K + γΘ(1 + Γ )
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otherwise, with

P ∗ = ΘS∗, A∗ =
1− (1 +Θ)S∗

1 + Γ
, R∗ = ΓA∗

Λ =
δ + µ

δ + σ + µ
, Γ =

ζ

δ + σ + µ
, Θ =

α

ε+ γ + µ
, K = ζΛ+ µ∗.

Furthermore, if there exist both an addiction-free equilibrium (AFE) and an
endemic (non-AFE) equilibrium in the hypercube, the equations above yield the
AFE only when it is stable, and otherwise yield the endemic equilibrium. There
are never more than two coexistent equilibrium solutions, and there is never
more than one endemic solution in the interior of the hypercube. In particular,
if γ = βP = 0 or α = 0 then the AFE always exists, and an unique, interior,
endemic equilibrium exists if and only if R0 > 1.

Proof Setting Eqns. (1)-(4) equal to zero, Eqns. (2) and (4) quickly give us the
given expressions for P ∗ and R∗, and using these expressions together with
S +P +A+R = 1 gives us A∗. Combining the equations for P ∗ and R∗ with
Eqn. (1) and setting equal to zero, we have

0 = A(βAS −K) +ΘS(γ + βPS). (13)

If α = 0 thenΘ = 0, and we have the AFE P,A,R = 0 and S = 1. Additionally,
given that βA > 0, we have an endemic equilibrium defined by S = K/βA
which will lie in the unit hypercube by the equations for P ∗, A∗, and R∗ if
K/βA < 1 (in which case, it is this equilibrium which is given by the statement
of the theorem instead of the AFE with S∗ = 1). Note that for the AFE with
S = 1, R0 = βA/K so we expect the AFE to be unstable precisely when the
endemic equilibrium represented by S = K/βA crosses into the hypercube.

If γ = βP = 0 instead, then A = 0 yields the AFE described in Eqn. (5)
and there is once again a second equilibrium defined by S = K/βA. Note that
when γ = 0, the AFE has S = 1/(1 +Θ) so R0 = βA/(K(1 +Θ)). It is easy to
verify that when R0 > 1, the theorem yields the S∗ = K/βA equilibrium and
when R0 < 1, it yields the AFE S∗ = 1/(1 + Θ). One can also quickly verify
that if 0 ≤ S∗ ≤ 1/(1+Θ) ≤ 1 (= 1 when α = 0), 0 ≤ A∗ ≤ 1 and substituting
the equation for A∗ into R∗, one can easily see that 0 ≤ R∗ ≤ 1 as well. The
equation for P ∗ implies that P ∗ ≥ 0 and S∗(1+Θ) = S∗+P ∗ ≤ 1 implies that
P ∗ ≤ 1 − S∗ ≤ 1, which taken together shows that 0 ≤ S∗ ≤ 1/(1 + Θ) ≤ 1
is a sufficient condition for the corresponding equilibrium to lie in the closed
hypercube. Finally,R0 > 1 implies thatK/βA < 1/(1+Θ) ≤ 1 and 0 < R0 < 1
implies that 0 < K/βA < 1/(1 + Θ), which in turn implies that the AFE is
unstable whenever the endemic equilibrium is inside the open unit hypercube
and stable otherwise.

If α 6= 0 and γ, βP are not both zero, using the relation for A∗ in Eqn. (13)
results in a degree-two polynomial equation for S

0 = K − (βA + (1 +Θ)K + γΘ(1 + Γ ))S + (βA(1 +Θ)− βPΘ(1 + Γ ))S2.
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If βA(1 + Θ) − βPΘ(1 + Γ ) = 0, it is easy to see that 0 < S ≤ 1 (note that
K > 0 for all parameter choices). Solving the quadratic equation yields the
expression for S∗ given in the statement of the theorem but with both a plus
and minus before the radical. The discriminant can be rewritten as

(βA− (1 +Θ)K)2 +Θ(1 +Γ )[4βPK + γ(2βA + 2K(1 +Θ) + γΘ(1 +Γ ))] ≥ 0,

so the roots are always real. Considering in turn cases where βA(1 + Θ) −
βPΘ(1 + Γ ) is greater than zero and less than zero, it can easily be seen that
S∗ with the negative square root is positive in both cases. Similarly, S∗ with
the positive square root is negative if βA(1 + Θ) − βPΘ(1 + Γ ) < 0. We now
show that S∗(1 +Θ) ≤ 1 for the S∗ with the negative root.

First, in the case where βA(1 +Θ)− βPΘ(1 + Γ ) = 0 it is easy to see that
the relation holds. Now assume that βA(1 + Θ) − βPΘ(1 + Γ ) > 0. Isolating
the radical in S∗, the inequality S∗(1 + Θ) ≤ 1 is equivalent to the condition
that

√
. . . ≥ 2βPΘ(1 + Γ )

1 +Θ
+ (1 +Θ)K + γΘ(1 + Γ )− βA (14)

Squaring both sides, numerous terms cancel and we are left with an expression
that can be reduced to

0 ≥ Θ (βPΘ(1 + Γ )− βA(1 +Θ)) (βP + γ(1 +Θ)) .

We can see that this is true given our assumption, which shows that the
magnitude of the right hand side of Eqn. (14) is less than or equal to that of
the left hand side. However, since the left hand side is positive, the relation
holds in all cases. Now assume that βA(1 + Θ) − βPΘ(1 + Γ ) < 0. Then the
inequality for S∗(1+Θ) ≤ 1 in Eqn. (14) is reversed. Similarly as before, we can
show that the magnitude of the right hand side is larger than the magnitude
of the left by isolating the radical and squaring both sides,

√
. . . ≤

∣∣∣∣2βPΘ(1 + Γ )

1 +Θ
+ (1 +Θ)K + γΘ(1 + Γ )− βA

∣∣∣∣
but then multiplying both sides by (1 +Θ), we can see that the interior of the
absolute value is positive by our assumption βPΘ(1 + Γ ) − βA(1 + Θ) > 0.
So the relation holds for all cases of βA(1 + Θ) − βPΘ(1 + Γ ), and we have
shown S∗(1 +Θ) ≤ 1, where S∗ takes the negative square root solution to the
quadratic equation above, as given in the statement of the theorem.

We have already shown that the condition S∗(1 + Θ) ≤ 1 is sufficient for
the corresponding equilibrium to lie inside the closed unit hypercube, and we
now note that it is also a necessary condition, since otherwise A∗ < 0. As
a result, if we consider the positive square root version of S∗ for the case
where it is positive (βA(1 + Θ) − βPΘ(1 + Γ ) > 0), we quickly get the same
expression as in Eqn. (14), but with the inequality reversed. As a result, this
equilibrium value is only feasible in the case of equality, e.g. when α = 0 or
βP = γ = 0. In both cases, this equilibrium corresponds to the AFE as found
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earlier in the proof, with the other equilibrium S∗ = K/βA (as given in the
statement of the theorem) representing the endemic state. As this is the only
case in which there are simultaneously two feasible equilibrium solutions, and
we have already examined stability of the AFE in this case, this concludes the
proof.

We note that stability of the AFE as described in the previous result is
local in nature, and any rigorous proof of global asymptotic stability would
require further analysis. Additionally, none of our analysis considers the stabil-
ity (either local or global) of the endemic equilibrium. However, our numerical
results suggest that the endemic equilibrium is always globally asymptotically
stable when (1) it is feasible and (2) the AFE is either unstable or does not
exist (see Eqn. 12 for a condition under which both the AFE and endemic
equilibrium may feasibly exist and be stable).

3.3 Numerical Sensitivity Analysis

To assess the overall 10 year sensitivity of the model to its parameters, we used
Saltelli’s extension of the Sobol sequence (Saltelli, 2002; Saltelli et al., 2010)
to vary each parameter within a range about its estimated value. We then
conducted Sobol sensitivity analysis (Sobol, 2001) on the resulting values of
S, P,A, and R after 10 years. This is a variance-based sensitivity analysis that
has become extremely popular in recent years. One of its greatest strengths is
the ability to efficiently calculate not just first-order sensitivity of the parame-
ters (that is, perturbations of one parameter at a time), but also second-order
(two at a time) and total-order (all combinations of other parameters) indices
Saltelli et al. (2010). An immediate consequence of this functionality is that
the presence of higher-order interactions can be inferred by comparing first-
order sensitivity indices with total-order indices. If significant higher-order
interactions between the parameters are present, these results will be notably
different.

Initial conditions were chosen to reflect estimations of recent U.S. popula-
tion fractions in each class around the year 2016: P0 = 0.05 (Boudreau et al.,
2009) (some increase added for passage of time), A0 = 0.0062 (Hughes et al.,
2016), and R0 = 0.0003 (SAMHSA-CBHSQ, 2016) resulting in S0 = 0.9435
so that S +P +A+R = 1. Relative sensitivity of the parameters can be seen
in Fig. 4, where longer bars of a given color denote higher sensitivity to that
parameter. The reported results for all sub-bars in this figure are within a 95%
confidence interval of 0.0053. For parameter sensitivity analysis with respect
to the model’s AFE, see Appendix A.5. To conduct this sensitivity analysis,
we used the expanded version of the model given in Eqns. (8)-(11) to illustrate
the fact that the model is insensitive to choices of ν1 and ν2 compared to σ;
results without these nonlinear replase terms (as in the original specification
of the model, Eqns. (1)-(4)) are the same, minus the two parameter bars in
the plot. Similarly, if the linear relapse rate σ is set to zero and the nonlinear
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relapse rates remain, the sensitivity results are similar with very low to no
sensitivity to ν1 and ν2.
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Fig. 4 Sensitivity of 10 year values for S, P,A, and R to model parameters using
expanded Eqns (8)-(11). See Fig. 1 or Table 1 for parameter definitions. First-order
indices do not take into account interactions with other parameters, while total-order indices
measure sensitivity through all higher-order interactions

3.4 Simulation Results Around Realistic Parameters

The parameters ε (the rate at which prescribed persons complete their opioid
prescription(s)) and ζ (the rate that addicts enter treatment) are difficult to
parse out from data so in the following results, we varied them in the space
of ε, ζ ∈ [0.8, 8.0] × [0.2, 2.0] while simultaneously considering changes in one
other parameter at a time: βP , βA, γ, δ, and α. The combined results are
shown in Fig. 5. Whenever unspecified by the plot, all parameters were held
constant as in Table 1.

The first row of Fig. 5 examines the effect of varying the addiction rate
due to opioids from excess prescriptions (βP ) while holding βA = 0.00094,
which dictates the rate of addiction due to black-market prescription opioids.
The second row similarly examines the effect of varying βA while holding βP
constant. As suggested by Fig. 4, model results do not appear to be sensitive
to βA, and are only somewhat sensitive to βP compared to γ, δ, or α. In every
case, to minimize the number of opioid addicts a high prescription completion
rate and a high rate of entering treatment is required (upper-right region of
each subplot).

As βP increases, there exists a higher addicted class for low values of ε
and ζ, suggesting that left-over prescriptions could exacerbate the number of
addicted in certain circumstances - a scenario that was not apparent from
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Fig. 5 Varying the Illicit Addiction Rate Due to Excess Prescriptions (βP ),
Addiction Rate Due to Illicit Purchases (βA), Prescription Addiction Rate (γ),
Treatment Success Rate (δ), and Prescription Rate (α). Colormaps illustrate the
predicted 10 years addicted population fraction for prescription completion rates (ε) and
rehabilitation rates (ζ) between [0.8,8.0] and [0.2,2.0], respectively, while varying the other
parameters one at a time

the Sobol analysis in Fig. 4 which was conducted within a larger feasibility
space of all parameters rather than the estimated values in Table 1. Even more
striking, the third row of Fig. 5 suggests that for estimated parameters, the
rate at which medically prescribed opioid users become addicted (γ) very sig-
nificantly affects the number of addicted. When γ doubles from its assumed
realistic value of 0.00744 to 0.015, the number of addicts virtually doubles
as well. Assuming that the treatment success rate δ is difficult to move, our
numerical analysis strongly suggests that γ and α, the prescription addiction
rate and the prescription rate respectively, are the parameters to focus on. This
result strongly reinforces and extends the AFE finding that this epidemic is es-
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Fig. 6 Varying the the Prescription Rate (α) and Treatment Success Rate (δ)
in tandem with varying prescription completion rates (ε) and rehabilitation rates (ζ) be-
tween [0.8,8.0] and [0,1]. Colormaps illustrate the predicted 10 years addicted population
percentage

sentially driven by prescriptions and prescription-induced addictions, both in
the hypothetical case where the prescription addiction rate is low and around
realistic, data-estimated parameter values. It is also clear that even when the
treatment success rate δ is low, or the prescription rates γ and α are as ex-
pected or high, the addicted population can be greatly reduced through a
combination of a high rehab-entry rate ζ and a high rate of finishing opioid
prescriptions and returning to the S-class (ε).

Finally, we explored the relationship between α, ε, δ, and ζ in detail, as
these parameters are most likely to be the target of control efforts. The results
can be seen in Fig. 6. Even with current level prescription rates (estimated
to be α ∼ 0.15), decreased addicted population percentages can be achieved
with sufficient prescription completion rates, rehabilitation initiation rates,
and treatment success rates.

4 Discussion and Conclusion

In this paper, we present a first model for the opioid epidemic which utilizes
the successful mathematical epidemiology approach popularized by Kermack
and McKendrick (1927) for the spread of infectious disease. Parameters are
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estimated from the literature and simulation results are compared with mor-
tality data and estimates for current population fractions of our given model
compartments. Analysis of our model shows that maintenance of an addiction-
free population (the addiction-free equilibrium, or AFE) requires at minimum
the elimination of both patient prescription-induced addiction (γ = 0) as
well as secondary, non-patient addictions attributable to filled prescriptions
(βP = 0). Parameter sensitivity analysis indicates that the first of these is
far more important, with near-AFE endemic states possible even if βP is sig-
nificantly greater than zero as long as γ = 0 (see Fig. 7 in Appendix A.5).
This result strongly suggests that reducing the number of addictions among
opioid-prescribed patients is a critical first step in combating the crisis.

Even in the hypothetical case where both prescription-induced addiction
and addiction resulting from leftover prescription opioids are eliminated, the
threat of ongoing, endemic addiction persists due to illicit availability of these
drugs. In this case, our model reduces to an illicit drug addiction model except
that prescribed opioid users are considered safe from addiction since they
are closely monitored to prevent addiction to the drugs they are taking. Our
calculation of the basic reproduction number, R0, then provides a metric by
which we can determine if overall addiction will eventually die off or persist
based upon model parameters.

A key result of our addiction-free equilibrium analysis using parameters
estimated from the literature is that we strongly expect R0 to be less than
one (R0 ≈ 0.025 for estimated values) and thus, we expect that a black-market
only prescription opioid epidemic is not self sustaining. This result provides
mathematical backing to the conventional wisdom that unlike previous drug
epidemics, prescription opioid addiction is essentially a by-product of primary
and secondary addictions caused by medical prescription and likely would not
be self-sustaining absent these prescriptions.

Due to the form discovered for R0 in Eqn. 6, the ratio of the addiction
rate due to black-market opioids (βA) to the death rate of addicts (µ∗) ap-
pears to be critical. If this ratio is less than one, the opioid epidemic is not
self-sustaining without prescription drugs no matter the prescription rate or
addiction treatment rate. This precise ratio βA/µ

∗ may be somewhat artificial
due to the recycling of overdosed persons back into the susceptible class (done
in order to maintain an overall static population size), but the suggestion of
a natural balance between a drug’s infectiousness and potential for addiction
verses its potential to be lethal is not far-fetched and could merit further study
to better understand addiction in the context of an infectious social disease.

Given the difficulties of completely eradicating prescription-based addic-
tion (γ = 0 and βP = 0), the idea of reaching an addiction-free state remains
improbable. Relaxing these assumptions, our numerical analysis suggests that
control efforts should focus on reducing the average prescription length (ε)
and increasing the rate addicts enter treatment (ζ), even if treatment is of-
ten unsuccessful (Fig. 5), followed by decreasing the number of prescriptions
written (α). Reducing both ε and α could help naturally decrease the rate
of prescription-induced addiction, γ. In one typical case where ε = 3.0 and
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ζ = 0.25, doubling the rate that users enter treatment to ζ = 0.5, resulted in
a 21% decrease in the addicted population after 5 years, despite the fact that
treatment success was held at 10%. If the treatment success rate also doubles
to δ = 0.2, the addicted population decreases another 8.7% (or by 27.5% of
where it was initially) after 5 years.

Following this, we found that increasing the success rate of rehabilitation
(δ) should also be a priority (Fig. 10 in the Appendix A.6). The beneficial
effect of decreasing overall prescription lengths (via increasing ε) is particularly
pronounced when either the rate of starting rehabilitation (ζ) is low or the
success rate of rehabilitation (δ) is low, regardless of the prescription rate (α).
On the other hand, our model suggests that neither the mode of relapse nor
illicit opioids, whether from leftover prescriptions or demand-driven market,
have much impact on the total fraction of addicted (Fig. 4 and Fig. 7 in the
Appendix).

To simplify the dynamics for this first model, we neglected potential ef-
fects due to gender, race, and geographical location. Additionally, our model
did not attempt to capture how prescription drug addicts may move to heroin
or vice versa, leaving this study to future work. This dynamic has important
ramifications for public health as heroin use is associated with high rates of
overdose, especially when laced with fentanyl (Gladden et al., 2016; Peter-
son et al., 2016; O’Donnell et al., 2017), and could be particularly lethal for
users who have first built up an opioid tolerance and then increase their doses
on heroin (Muhuri et al., 2013). While many have modeled the heroin epi-
demic previously (D. Mackintosh, 1979; White and Comiskey, 2007; Battista,
2009; Nyabadza and Hove-Musekwa, 2010; Huang and Liu, 2013; X. Abdurah-
man, 2014), we are not aware of studies that incorporate effects of fentanyl,
methadone, and prescription opioids all together, or studies that explicitly
consider demographic effects. Our model is meant to provide a starting point
for this larger, more detailed work.

Another simplification we made for the presentation of this first model was
the implicit assumption that parameter values are constant with respect to
time. This is obviously not the case in for many of our parameters, in partic-
ular the prescription initiation rate (α) (Pezalla et al., 2017), the prescription
completion rate (ε) (Scully et al., 2018), the rehabilitation initiation rate (ζ),
and the rehabilitation success rate (δ). Despite the large amount of public in-
terest in prescription opioid addiction, we found it quite difficult to obtain our
ball-park estimates for many of the parameters, as prescription and addiction
statistics are often given in yearly aggregate numbers and survey studies are
not typically designed with the intent to parameterize mathematical models.
For other parameters such as βA, βP , ν1, and ν2, data is almost wholly absent
by nature; fortunately, our results suggest that the model is relatively insensi-
tive to these parameters. While beyond the scope of this particular study, we
believe that a rigorous, time-sensitive estimation of model parameters is an
important next step and represents a significant work on its own.

In summary, our main results confirm that necessary measures to combat-
ing the opioid epidemic include lowering the number and duration of medi-
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cally prescribed painkillers, more successful treatment regimens, and increas-
ing the availability, ease, and motivation for opioid addicts to enter treatment
(Watkins et al., 2017). Our findings also provide a direct measure of the epi-
demic’s sensitivity to each of these efforts which may be useful in allocating
available resources, especially for small rural towns, cities, or states combating
the epidemic. Better estimates of model parameters from data could prove cru-
cial in developing management strategies and refining our modeling approaches
- given the role of non-prescription opioids such as heroin and fentanyl to the
overall epidemic and the unique effects of geography and population demog-
raphy, we believe that the model presented here represents only the beginning
in a larger mathematical exploration of opioid addiction dynamics.
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A Appendix

Here we present supplemental material to support our findings including additional model
analysis and validation, numerical stability analysis, and simulation data. We also provide
details for the calculation determining a condition for backward bifurcation, the explicit
Jacobian used in our stability analysis, and simulation results illustrating system sensitivity
to the prescription addiction rate (γ), treatment success rate (δ), and prescription rate
(α). Futhermore, we explore the and the relationship between prescription rate (α) and
prescription addiction rate (γ).

A.1 Initial Conditions for Validation

We estimated the initial prescribed population, P0, based off of the percentage of U.S.
population to whom were prescribed opioids at any given week in 2009 (2%) (Boudreau
et al., 2009). Since there were more prescriptions given in 2009 than 1999 (Shah et al.,
2017), we estimated that roughly 0.40×2% of the population were prescribed opioids at any
time in 1999, hence P0 = 0.008. Note we estimated the coefficient of 0.40 by using the ratio
of total opioids MME sold in 1999 to 2009 (U.S. Food and Drug Administration, 2018).

We backed out the initial addicted population from the number of prescription opioid
deaths in 1999 (2749) (Hedegaard et al., 2017), and normalized it by the fraction of deaths
attributed to addicted persons (54.6%) (Gwira Baumblatt et al., 2014) and the predicted
number of deaths from our model with the age-adjusted U.S. population in 1999 (259×106)

(U.S. Census Bureau: International Database, 2018), e.g., A0 =
(0.546)(2749)

(259×106)(µ∗−µ) = 0.00136.

We then assumed R0 = 0.1A0 (Office of the Surgeon General, 2016) (fraction of population
in treatment), making S0 = 0.990504.
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A.2 Analysis of the Addiction-Free Equilibrium

Here we derive conditions on the existence of an addiction-free equilibrium (AFE) within
the system defined by Eqns.1-4. To begin, we set each equation to zero and require that
A = 0. Eqn. 3 becomes 0 = −(δ + σ + µ)R, and since µ > 0 as a natural death rate, this
implies that R = 0 at any AFE (conversely, R = 0 requires that either A = 0 or ζ = 0,
which my apply at the beginning of an epidemic). We are left with the system

0 = −αS∗ − βPS∗P ∗ + εP ∗ + µP ∗

0 = αS∗ − (ε+ γ + µ)P ∗

0 = P ∗(γ + βPS
∗).

P ∗ 6= 0 since otherwise the only solution is S∗ = P ∗ = A∗ = R∗ = 0 and we require that
S+P +A+R = 1. Then 0 = γ+βPS. Since all our parameters and dependent variables are
non-negative by definition, γ = βP = 0. In this case, opioids are available only through the
presence of current addicts (e.g. on the black market due to illicit demand) and not through
currently prescribed users. We can now use our assumption that 1 = S + P +A+R to find
that

S∗ =
ε+ µ

α+ ε+ µ
A∗ = 0

P ∗ =
α

α+ ε+ µ
R∗ = 0.

A.3 Calculating the Basic Reproduction Number, R0

Assuming that γ = βP = 0, the necessary and sufficient conditions for the AFE to exist,
Eqns. 3 and 4 reduce to

Ȧ = σR+ βASA− (ζ + µ∗)A

Ṙ = ζA− (δ + σ + µ)R.

Using the next generation method (Diekmann et al., 1990; van den Driessche and Watmough,
2002; Heffernan et al., 2005; Diekmann et al., 2010) with both A and R treated as “infected”,
we compute the matrices F and V as

F =

[
βA(ε+µ)
α+ε+µ

0

0 0

]
and V =

[
ζ + µ∗ −σ
−ζ δ + σ + µ

]
.

Then R0 is given by the spectral radius of FV −1,

R0 =
βA(ε+ µ)

(α+ ε+ µ)(µ∗ + ζΛ)
=

βAS
∗

µ∗ + ζΛ

where Λ =
δ + µ

δ + µ+ σ
, S∗ =

ε+ µ

α+ ε+ µ
.

Prevalence of opioid addicts will rise when R0 > 1 and fall when R0 < 1.
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A.4 Jacobian Analysis and Alternative Relapse Models

Consider an alternative form for the model with the addition of two relapse rates ν1SP and
ν2SA,

Ṡ = −αS − βASA− βPSP + εP + δR+ µ(P +R) + µ∗A

Ṗ = αS − (ε+ γ + µ)P

Ȧ = γP + σR+ βASA+ βPSP + ν1RP + ν2RA− (ζ + µ∗)A

Ṙ = ζA− (δ + σ + µ)R− ν1RP − ν2RA.

The AFE for this system remains the same (with the same conditions for existence) as in
Eqn. 5. Calculating the basic reproduction number R0 using the next generation method,
we arrive at

R0 =
βA(ε+ µ)

(α+ ε+ µ)(µ∗ + ζΛ̃)
=

βAS
∗

µ∗ + ζΛ̃

where Λ̃ =
δ + µ

δ + µ+ σ + ν1P ∗ , S
∗ =

ε+ µ

α+ ε+ µ
,

so the addition of ν1RP contributes to R0 in a way similar to σ (but scaled by P ∗), while
the addition of ν2RA does not contribute to R0. We will now conduct further analysis on
this model which, as a direct extension of our model given in Eqns. (1)-(4), will include it
as a subcase.

Reducing the system to three equations for S,A,R using P = 1− S −A−R gives us

Ṡ = −αS − βASA− βPS(1− S −A−R)

+ (ε+ µ)(1− S −A−R) + (δ + µ)R+ µ∗A

Ȧ = γ(1− S −A−R) + σR+ βASA

+ βPS(1− S −A−R) + ν1R(1− S −A−R) + νRA− (ζ + µ∗)A

Ṙ = ζA− ν1R(1− S −A−R)− ν2RA− (δ + σ + µ)R,

(15)

The Jacobian, J , of this system is


−α− βAA+ βP (S − P ) − (ε+ µ) (βP − βA)S − (ε+ µ) + µ∗ βPS + δ − ε

−γ + βAA+ βP (P − S) − ν1R −γ + (βA − βP )S − ν1R + ν2R− (ζ + µ∗) −γ + σ − βPS + ν1(P − R) + ν2A

ν1R ζ + ν1R− ν2R −ν1(P − R) − ν2A− (δ + σ + µ)


Evaluated at the AFE given by Eqns. 5 with γ = βP = 0, the Jacobian J(x0) is−(α+ ε+ µ) −βAS∗ − (ε+ µ) + µ∗ δ − ε

0 βAS
∗ − (ζ + µ∗) ν1P ∗ + σ

0 ζ −ν1P ∗ − (δ + σ + µ)

 .
Following Castillo-Chavez and Song (2004), we now take βA to be the bifurcation pa-

rameter (given the form of R0) and conduct analysis around

β∗
A =

µ∗ + ζΛ̃

S∗ .

to analyze the bifurcation of this system when R0 = 1 and determine the bifurcation’s
direction (Castillo-Chavez and Song, 2004). First, we define the matrix A as in Castillo-
Chavez and Song (2004) but, via a change of coordinates, taking x0 to be the AFE and
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the bifurcation parameter to be βA. Writing our system of differential equations (including
nonlinear relapse terms) as dx/dt = f(x, βA), we have

A =
∂fi

∂xj
(x0, βA = β∗

A) = J(x0, βA = β∗
A)

=

−(α+ ε+ µ) −ζΛ̃− (ε+ µ) δ − ε
0 ζ(Λ̃− 1) σ + ν1P ∗

0 ζ −(δ + σ + ν1P ∗ + µ)

 . (16)

It is easy to check that zero is a simple eigenvalue of A and that all other eigenvalues
of A have negative real parts. A has right eigenvector x = (−S∗(1 + Γ̃ ), 1, Γ̃ )T and left

eigenvector y = (0, 1, 1− Λ̃) where Γ̃ is given by

Γ̃ =
ζ

δ + µ+ σ + ν1P ∗

and once again

Λ̃ =
δ + µ

δ + µ+ σ + ν1P ∗ .

The first component of x is negative, but since S∗ > 0 the analysis still applies (Castillo-
Chavez and Song, 2004). We now let fk be the kth component of f and set

a =
∑

k,i,j=1

ykxixj
∂2fk

∂xi∂xj
(x0, βA = β∗

A)

b =
∑
k,i=1

ykxi
∂2fk

∂xi∂βA
.

The non-zero derivatives are

∂2f1

∂S∂A
=

∂2f1

∂A∂S
= −β∗

A

∂2f2

∂S∂A
=

∂2f2

∂A∂S
= β∗

A

∂2f2

∂S∂R
=

∂2f2

∂R∂S
=

∂2f2

∂A∂R
=

∂2f2

∂R∂A
= −ν1

∂2f2

∂R2
= −2ν1

∂2f3

∂S∂R
=

∂2f3

∂R∂S
=

∂2f3

∂A∂R
=

∂2f3

∂R∂A
= ν1

∂2f3

∂R2
= 2ν1

∂2f2

∂A∂R
=

∂2f2

∂R∂A
= ν2

∂2f3

∂A∂R
=

∂2f3

∂R∂A
= −ν2

∂2f1

∂A∂βA
= −S∗

∂2f2

∂A∂βA
= S∗.
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Now,

a = (1)(−S∗(1 + Γ̃ ))(1)β∗
A + (1)(1)(−S∗(1 + Γ̃ ))β∗

A

+ (1)(−S∗(1 + Γ̃ ))(Γ̃ )(−ν1) + (1)(Γ̃ )(−S∗(1 + Γ̃ ))(−ν1)

+ (1)(1)(Γ̃ )(−ν1) + (1)(Γ̃ )(1)(−ν1) + (1)(Γ̃ )2(−2ν1)

+ (1− Λ̃)(−S∗(1 + Γ̃ ))(Γ̃ )(ν1) + (1− Λ̃)(Γ̃ )(−S∗(1 + Γ̃ ))(ν1)

+ (1− Λ̃)(1)(Γ̃ )(ν1) + (1− Λ̃)(Γ̃ )(1)(ν1) + (1− Λ̃)(Γ̃ )2(2ν1)

+ (1)(1)Γ̃ ν2 + (1)Γ̃ (1)ν2 + (1− Λ̃)(1)Γ̃ (−ν2) + (1− Λ̃)Γ̃ (1)(−ν2)

= −2S∗(1 + Γ̃ )β∗
A − 2Λ̃Γ̃ (1 + Γ̃ )P ∗ν1 + 2Λ̃Γ̃ ν2

= −2(1 + Γ̃ )(µ∗ + ζΛ̃+ Λ̃Γ̃P ∗ν1) + 2Λ̃Γ̃ ν2

b = (1)(1)S∗ > 0.

To make a > 0, we therefore need

Λ̃Γ̃ ν2 > (1 + Γ̃ )(µ∗ + ζΛ̃+ Λ̃Γ̃P ∗ν1). (17)

If this condition is satisfied, there will be a backward bifurcation at R0 = 1. Of course, for
the model given in Eqns. (1)-(4) where ν2 functionally equals zero, it is not possible for a
backward bifurcation to occur.

A.5 Addiction Free Equilibrium Numerical Analysis

To examine the sensitivity of the model’s addiction free equilibrium (AFE) to its parameters,
we first ran simulations to see how the AFE changes when either γ or βP shifts away from
zero. Parameter values were chosen as in Table 1 with ε = 3 and ζ = 0.25. Our results
show that for our estimated parameters resulting in R0 ≈ 0.022, shifting βP away from zero
has little noticeable effect while shifting γ away from zero strongly moves the equilibrium
away from the addiction-free state (see Fig. 7). This suggests that in a nearly addiction-
free population, prescription-induced addiction remains far more important than securing
prescriptions away from non-prescribed users. Note that in the exact case of an AFE, it is
always stable when γ = βP = 0 for a parameter space centered around the other parameters
listed in Table 1.

Further analysis of the model parameter space when γ = βP = 0 was conducted using
the Sobol method (Sobol, 2001). We chose N = 700000 and generated N(2D+2) parameter
sets (where D = 9 is the dimension of the parameter space) via Saltelli’s extension of the
Sobol sequence (Saltelli, 2002; Saltelli et al., 2010) for a total of 16 million samples. We
then ran the model to 10000 years for each set of parameters to arrive at an equilibrium.
We subsequently conducted Sobol analysis (Sobol, 2001) on the values for S, P,A, and R
after the final year. Initial conditions for each simulation were S(0) = 0.9435, P (0) = 0.05,
A(0) = 0.0062, and R(0) = 0.0003.

A.6 Further Numerical Exploration of Parameter Space

In this section we expand our parameter space exploration for {ε, ζ} ∈ [0.8, 8.0]× [0.2, 2.0] by
examining parameter sensitivity for each of S, P,A, and R instead of only the addicted class.
More specifically, we examine the associated effects of ε and ζ on the predicted populations
for 10 years into the future for each of the following cases:

1. Prescription Addiction Rate (γ),
2. Treatment Success Rate (δ),
3. Prescription Rate (α),
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Fig. 7 Model Sensitivity to γ and βP . Effect of moving γ and/or βP away from zero
when R0 ≈ 0.085 with likely parameter values, ε = 3 and ζ = 0.25

A *

0.0

0.2

0.4

0.6

0.8

1.0

1.2
First-order indices

S
P
A
R

A *
0

1

2

3

4

Total-order indices
S
P
A
R

Value Range
0.02-0.2

A 0.0001,0.01
0-1
.8-8

0.2-2
.0023-.023

* .00365-.0365
0-1

Fig. 8 Sobol sensitivity analysis for equilibrium values when γ = βP = 0 (see
Fig 1 or Table 1 for parameter definitions). First-order indices do not take into account
interactions with other parameters, while total-order indices measure sensitivity through all
higher-order interactions. The parameter ranges tested here are the same as in Fig. 4

4. Prescription Rate vs. Prescription-Induced Addiction (α vs. γ).

As in Fig. 5, Fig. 9 shows that as γ increases the addicted population grows. In particular,
if γ doubles from its estimated value, there exists (ε, ζ) for which 2% of the population
becomes addicted to opioids, which is approximately three times the number of addicts in
2016. Moreover, as γ increases, so does the rehabilitation class. Interestingly, for values of
(ε, ζ) that make the addicted class roughly 2% of the population, the rehabilitation class
makes up approximately 1%. On the other hand, when the rehabilitation class composes
roughly 1.5% of the population, the addicted class makes up roughly the same percentage.
When δ increases the rehabilitation class population decreases near zero. The population of
the addicted class decreases towards zero as well, while the populations of the susceptible
class and prescribed class appear unaffected (Fig. 10).

Fig. 11 shows that if the prescription rate α is small enough, the entire population
almost remains in the susceptible class. However, for certain values of (ε, ζ) roughly 0.5% of
the population can still remain in the addicted population. Moreover, for all cases of α and
small ζ, the rehabilitation class’ population remains near zero for almost all values of ε.
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Finally, we explore the relationship between prescription-induced addiction (γ) and com-
pleting the prescription and heading back into the susceptible class (ε). Situations in which
these two parameters do not add to one could be used to model long or short-term opioid
prescription use. The data is presented in Fig. 12. It is clear that a decrease in ε corre-
sponds to an increase in the number of addicts as might be expected for more chronic opioid
prescription use. For large γ those differences are more subtle, as increasing γ leads to a
profound escalation in the addicted population regardless of ε.
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Fig. 9 Prescription Addiction Rate Colormaps illustrating the long-term equilibrium
solutions (S∗, P ∗, R∗, and A∗) for prescription-end rates (ε) and rehabilitation-start rates
(ζ) between [0.8, 8] and [0.2, 2.0], respectively, and for various prescription addiction rates
(γ)

Fig. 10 Treatment Success Rate Colormaps illustrating the long-term equilibrium so-
lutions (S∗, P ∗, R∗, and A∗) for prescription-end rates (ε) and rehabilitation-start rates (ζ)
between [0.8, 8] and [0.2, 2.0], respectively, and for various treatment success rates (δ)
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Fig. 11 Prescription Rate Colormaps illustrating the long-term equilibrium solutions
(S∗, P ∗, R∗, and A∗) for prescription-end rates (ε) and rehabilitation-start rates (ζ) between
[0.8, 8] and [0.2, 2.0], respectively, and for various prescription rates (α)
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Fig. 12 Prescription-Induced Addiction vs. Prescription Completion. Colormaps
illustrating the long-term equilibrium solutions (S∗, P ∗, R∗, and A∗) for prescription rates
(α) and rehabilitation rates (ζ) between 0 and 1 and for various rates of prescription-induced
addiction (γ) and rates of finishing prescriptions (ε)
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