
A Semi-Automated Finite Difference Mesh Creation Method for

Use with Immersed Boundary Software IB2d and IBAMR

D. Michael Sentera,b,∗, Dylan R. Douglasa,d, W. Christopher Stricklanda,c, Steven G.
Thomasa, Anne M. Talkingtona,b, Laura A. Millera,b,d, Nicholas A. Battistae

aDept. of Mathematics, CB 3250, University of North Carolina, Chapel Hill, NC, 27599
bBioinformatics. and Comp. Biology, CB 7264, University of North Carolina at Chapel Hill, Chapel Hill,

NC 27599
cDepartment of Mathematics, 227 Ayres Hall, 1403 Circle Drive, Knoxville, TN 37996

dDept. of Biology, CB 3280, University of North Carolina, Chapel Hill, NC, 27599
eDept. of Mathematics and Statistics, The College of New Jersey, 2000 Pennington Rd., Ewing, NJ 08628

Abstract

Numerous fluid-structure interaction problems in biology have been investigated using the
immersed boundary method. The advantage of this method is that complex geometries,
e.g., internal or external morphology, can easily be handled without the need to generate
matching grids for both the fluid and the structure. Consequently, the difficulty of modeling
the structure lies often in discretizing the boundary of the complex geometry (morphology).
Both commercial and open source mesh generators for finite element methods have long
been established; however, the traditional immersed boundary method is based on a finite
difference discretization of the structure. Here we present a software library for obtaining
finite difference discretizations of boundaries for direct use in the 2D immersed boundary
method. This library provides tools for extracting such boundaries as discrete mesh points
from digital images. We give several examples of how the method can be applied that
include passing flow through the veins of insect wings, within lymphatic capillaries, and
around starfish using open-source immersed boundary software.

Keywords: immersed boundary method, fluid-structure interaction, mathematical biology,
biomechanics, biofluids

1. Introduction

The immersed boundary method (IBM) is a mathematical formulation and numerical
method for fully-coupled fluid-structure interaction problems that dates back to Peskin in

∗I am corresponding author
Email addresses: dmsenter@live.unc.edu (D. Michael Senter), dylan_ray@med.unc.edu (Dylan R.

Douglas), cstric12@utk.edu (W. Christopher Strickland), stevent3115@gmail.com (Steven G. Thomas),
annemt@email.unc.edu (Anne M. Talkington), lam9@unc.edu (Laura A. Miller), battistn@tcnj.edu
(Nicholas A. Battista)

URL: http://battistn.pages.tcnj.edu (Nicholas A. Battista)

Preprint submitted to Bioinspiration & Biomimetics July 8, 2020



1972 [1]. Since its creation, the IBM has been used to study a wide variety of problems in
biological fluid dynamics and fundamental fluid dynamics at low to intermediate Reynolds
numbers (Re < 10; 000). Diverse examples include the aerodynamics of insect flight [2, 3, 4],
lamprey swimming [5, 6], jellyfish swimming [7, 8], and fluid flows through organs such as
the heart and esophagus [9, 10, 11]. The relative ease of implementation and the availability
of open source codes has made it particularly useful in research and education [12, 13, 14].

The original IBM formulation discretizes immersed, elastic boundaries on a curvilinear
finite difference mesh. Many immersed boundary studies are performed in 2D and use simple
geometries with easy mathematical descriptions such as plates [2, 15], strings [16, 17], tubes
[10, 18, 19], ellipses [20, 21], hemiellipses [22, 8], and circles [23, 24, 25], or in 3D with spheres
[26] or cylinders [27]. In other cases, more complicated geometries are manually constructed
by the user via explicit mathematical functions or sets of functions that describe the elastic
boundary [28, 9, 29]; this endeavor is, however, non-trivial. David Baraff, a Senior Research
Scientist at Pixar Animation Studios has publicly said, “I hate meshes. I cannot believe
how hard this is. Geometry is hard.” [30].

This immediately highlights a challenge in performing immersed boundary simulations
for many biological applications that have complicated geometries. Most meshing tools are
finite element based, such as MeshLab [31], Gmsh [32], or TetGen [33], all of which are open
source. As far as we are aware, there is not an openly available and easy to use tool for
generating curvilinear finite difference meshes. A few finite difference meshing tools that
are available constrain the mesh to a Cartesian grid using cuboids, such as the open source
AEG Mesher [34], which was designed for electromagnetic simulations, and the propriety
software Argus ONE [35], which was designed to help incorporate geographic information
system (GIS) into numerical models [36].

What’s more, many applications, especially those in biology and medicine, usually have
some imaging data from which a mesh is estimated. For example, imagine generating a
numerical model of blood flow through an arterial network. There are highly resolved images
that clearly illustrate arterial branching patterns from which desirable geometric data, e.g.,
artery diameters, lengths, branching locations, etc., can be obtained. To perform numerical
simulations that reveal the spatial variations in the flow due to small scale geometric effects,
one must reconstruct this arterial network in detail. Even for 2D simulations this process
is non-trivial, as one would first need to recreate the structure using parametric functions
and then select particular parameter values that sample the structure’s geometry to obtain
a computational mesh with equally-spaced points. While this laborious approach may work
for some simplified arterial geometries, if the actual arterial network contains walls that are
not perfectly smooth or flat, simple tubular models may be insufficiently detailed and hence
give rise to non-realistic results. Our software aims to fill this gap using edge detection on
the original image, thereby preserving the original pattern and information from the images.
Bézier curves are then used to mathematically describe the images, after which they are
appropriately sampled to obtain a curvilinear mesh.

The challenge here is two-fold: first a continuous, parameterized description of the
boundary of interest must be found, potentially through image segmentation, and then
this boundary must be represented as a finite difference mesh with sampling to give the

2



desired geometric spacing between adjacent geometric nodes. Given the widespread use of
the IBM approach in both research and education [14, 12, 13, 37, 38], we found it useful to
create the open source software package MeshmerizeMe, a tool that both detects boundaries
in image data and creates finite difference meshes where the nodes are nearly uniformly
spaced. The output files are designed to be coupled with IB2d [39, 12, 13], IBAMR [40],
and other immersed boundary 2D software.

We provide an overview of the software MeshmerizeMe in Section 2. In particular,
we detail MeshmerizeMe’s implementation, workflow (Section 2.1), and how the software
computes a discretized mesh from parametric curves (Section2.2). We then present a variety
of examples using the software in Section 3; including two internal flow examples and one
external flow example. The examples include hemolymph flow through dragonfly wing veins
(Section 3.1), flow through a lymphatic capillary (Section 3.2), and oscillatory flow past a
starfish (Section 3.3).

The most straightforward immersed boundary simulations using this software would be
developed to simulate the flow past or through nearly rigid, complex, biological boundaries,
as demonstrated in these examples. We do not currently have a method for using multiple
images to simulate moving boundaries. There are, however, a few ways that one can model
moving and deformable boundaries. To begin, each of the Lagrangian points can be trans-
lated or rotated using a prescribed mathematical function rather than moving the boundary
based on image tracking. This approach has been used for a variety of biological applica-
tions, including flapping insect wings [2], swimming jellyfish [41, 8], flapping swimmerets
[42] and heart pumping [19]. If, in addition to vertex points, springs and beams are added
to pairs or triads of vertex points, elastic deformations due to the fluid-structure interaction
can also be simulated. This type of approach has been used for leaves in flow [43], flapping
filaments [16], the deformation of prey prior to puncture [44], and the movement of red blood
cells [45, 46].

2. MeshmerizeMe Implementation

MeshmerizeMe is a software package for the creation of 2D geometry files for use with
open source immersed boundary software such as IB2d and IBAMR. The software comes
with two main scripts: 1) ContourizeMe, which reads in an image file and uses automatic
edge detection to extract contours of interest into an SVG file, and 2) MeshmerizeMe, which
processes SVG files and IB2d- or IBAMR-style input2d files to create *.vertex files describing
the geometry of the SVG file at the appropriate resolution. Both SVG and vertex files are
UTF encoded text files. SVG is a widely supported vector graphics format, while the vertex-
format is used by IB2d and IBAMR to describe Lagrangian mesh points in an immersed
boundary simulation. The MeshmerizeMe script also includes a tool that uses Matplotlib to
allow the user to plot the geometry created by MeshmerizeMe for visual verification. These
scripts are written to run in Python 3.x, and upon installation both scripts are added to
the path on a Linux and Mac environment. This dual-script setup allows the end-user two
distinct entry points into the workflow; see Fig. (1) for an illustration.

3



Source Image
Automatically
Extract Edges

with ContourizeMe

Manually
Draw Edges

using Inkscape
RAW SVG of Edges

Clean SVG
with Inkscape

Create Mesh with
MeshmerizeMe

input2d

.vertex File

Add target points and
other files as necessary

Run Simulation with
IB solver such as IB2d

VTK Files with Si-
multion Results

Figure 1: Flow chart illustrating the MeshmerizeMe workflow. Blue rounded boxes represent files, while
square orange boxes represent user actions. The flow chart illustrates the two main entry points into the work
flow from the source image: automatic edge extraction using the ContourizeMe script as well as manually
creating the SVG by drawing “over” the image using software like Inkscape.

4



To provide a concrete example of the workflow, suppose an image is available either
from the field or an experiment. To detect the edges and generate an SVG file, the user
would run the ContourizeMe script on the desired image file (e.g., by typing ContourizeMe

image.jpg in the commandline). This opens a GUI with several features that may be used
to modify and enhance the image (see Figure 2). Note that common image formats such
as jpg, png, and tiff are supported. For best performance, the image should provide a good
contrast between the object boundary and background, while also having little noise. If this
is not the case, ContourizeMe allows the user to adjust the image contrast and saturation1

using simple sliders to better highlight the boundary of interest. Using a slider for the
pixel cutoff, the smoothness of the matched curve can be adjusted to account for noise. All
of these sliders update in real time. If this proves insufficient, unwanted edges that were
detected can easily be deleted at a later step. Once the user is satisfied with the result, the
curve is exported to an SVG file to be used as input for the MeshmerizeMe script.

Figure 2: The ContourizeMe GUI in action on Manjaro Linux 18.0.4 with Gnome DE emulated in VirtualBox.
The main window to the left allows the user to select the desired type of parameterization of the source image.
The user can chose grayscale, RGB, or HSV. The sliders allow the user to set the desired threshholding in
that parameterization. The detected edges are displayed in the live image (upper right) in green. The user
may optionally display the result of the paramterization and filtering (lower right).

In some cases, the original image quality may be high enough to proceed directly to the
discretization phase. In most cases, however, the user will want to make minor edits to
the SVG file to remove any potential artifacts, such as curves corresponding to background
noise in addition to the boundaries of interest. These edits can be done using common

1those changes are temporary and do not affect the original image data

5



vector graphics software such as Inkscape (open-source) or Adobe Illustrator (commercial).
Note that this also provides an alternate entry-step in the MeshmerizeMe workflow: curves
can be freely drawn using such software if image data is either not available, the boundary
structure is purely hypothetical, or in cases when the original image is too poor in quality
for reliable edge detection. In the latter case, image layers may be used in software such
as Inkscape that allows the user to trace over the desired edges to create the SVG file with
the necessary boundaries. Once the SVG file has been cleaned in this manner, it is advised
to collapse underlying groups and simplify contiguous paths, which in some vector graphics
software can be done from the “save” menu. In other cases, software to do this is freely
available online, such as SVGO and SVGOMG [47, 48].

With the desired geometry extracted into an SVG image, the next step consists of mak-
ing a folder in which the SVG file itself can be found, as well as an IB2d-style file called
input2d. This latter file includes information such as the spatial discretization step size
(more details on this can be found below). Our script reads this file to calculate and sample
the appropriate mesh. MeshmerizeMe is run by pointing it to the appropriate SVG file (e.g.,
typing MeshmerizeMe image.svg from the command line). It will then create the .vertex

file containing the mesh. Note that the filename of the vertex file will be taken straight
from the input2d file, regardless of the SVG filename. If multiple meshes are to be created,
MeshmerizeMe can be run in batch mode by providing it with a list of file names. We also
support piping from STDIN. This allows the user to easily pass a list of file names, such as
one created by the find command, to MeshmerizeMe for batch processing.

The resulting .vertex file can then be used as input for immersed boundary simulations
using IB2d and IBAMR. Note that the user will need to supply some additional informa-
tion as to the relationship between the boundary points, for example whether or not they
are connected with springs, beams, masses, and so forth. Currently, files that store this
information must be manually created, although a few of these relations are implemented
as classes in the MeshmerizeMe library to help with writing such scripts. Once this stage is
completed, the immersed boundary simulation is ready to run.

2.1. Overview of contour extraction

In this section, we provide an overview of how ContourizeMe extracts contours from
images. This is motivated by the need to accurately estimate the shapes of objects from
planar images or within some cross-section. Many techniques, ranging from edge-finding
using image gradients to image segmentation accomplished through supervised training of
Deep Neural Nets, have been proposed as generalized methods to extract such edges [49, 50].
The niche filled by MeshmerizeMe is to easily obtain 2d meshes from image data that can be
directly used in IB2d and IBAMR. In essence, it allows for the semi-automated generation
of meshes from image data using simple contour estimation from hand chosen thresholds of
pixel values [51] as a first step in the IBM workflow. This replaces the need to completely
create the structure mesh manually by finding idealized functions approximating the shape
of interest. This method was chosen for its simplicity and fast estimation in obtaining
user-verified 2d shapes of arbitrary smoothness and precision.

6



The ContourizeMe GUI was developed with the Python package Tkinter. Contour esti-
mation from image thresholding works by first applying noise reduction to a given image if
needed. The contour is assumed to be represented in the image by a gradient or steep change
in the pixel values that separates the foreground, or object of interest (OOI), from the back-
ground. For many images this means the existence of one or three inequalities or pixel-value
bounds (3 for the case of RGB and HSV values) that quantify this separation. Image noise
from one or multiple sources can make these inequalities ill-defined. Possible sources of
image noise are numerous and include sensor and electronic-circuit noise, analog-to-digital
conversion errors, and even statistical quantum fluctuations [52, 53]. ContourizeMe provides
implementations of various common noise reduction techniques that the user may choose
from depending on the source and strength of the noise present in their own images.

In the next step after determining an appropriate noise reduction technique, the user
manually determines one or more pixel value bounds depending on a given parameterization
(RGB, grayscale, HSV, etc.) that forms the lowest-area hull that corresponds to the object
of interest. This closed region is used to produce a binary image with pixel values of 1
corresponding to those contained in the provided region and 0 corresponding to those not in
this region. A topological algorithm in OpenCV [51] is applied to this binary image to give
contours that fully describe ‘separate’ clusters of homogeneous pixels (in this case pixels that
all equal 1). This algorithm yields integer pixel estimates of the boundaries, which are then
refined to sub-pixel estimates with user specified smoothness via the Chan-Vese algorithm.
More details are provided in the following subsections.

These contours themselves are estimations of the shapes of interest that are then used to
yield precise descriptions of the shapes as a set of continuous Bézier curves (see Appendix
B). Bézier curves are constructed using evenly spaced points from the sub-pixel boundary
estimates and exported in the SVG format.

2.1.1. Noise reduction

Filtering algorithms, the topological contour estimation algorithm, and most of the image
manipulations (such as RGB to HSV conversion, thresholding, etc.) are accomplished in
ContourizeMe via Python bindings of the OpenCV package [51]. OpenCV is a computer
vision suite developed in C++ built to tackle various problems including segmentation, 3D
reconstruction, edge-finding, and other related tasks.

ContourizeMe’s main GUI includes:

� An average filter which essentially is a type of down sampling that assumes the true
value of any pixel can be estimated by the average pixel value of a K by K window
surrounding that pixel. This is equivalent to convolving the image with a low-pass
filter kernel.

� A Gaussian filter which convolves the image with a Gaussian kernel of a specified size
and standard deviation in both the x and y directions. This is similar to the average
filter, but pixels are weighted via the 2D Gaussian function specified before they are
averaged.

7



� A median filter which instead of the average over a window, takes the median pixel
value. This kind of filter is typically used for ”salt and pepper” type image noise, and
has the advantage of leaving only pixel values that would have been observed in the
original image.

� A bilateral filter which is the recommended choice. The bilateral filter behaves similarly
to the Gaussian filter, but in addition to weighting pixels by their spatial distance it
also weights them by their difference in intensity in an attempt to preserve edges or
gradient information.

While the bilateral filter is recommended because of its intended edge-preservation [54],
one may want to employ one of the other convolution filters as they can smooth boundaries
produced by the thresholding and topological algorithms. We must also stress that this
selection is highly limited in scope and much more sophisticated and robust techniques for
the denoising of images exist depending on the image acquisition method and content. It
may be that making a model of the noise via a deep neural net such as UNet [55], CAIR
[56], Noise2Noise or Noise2Void [57] may be required or produce better results. Any method
may of course be employed before using this segmentation GUI.

2.1.2. Smoothing the results from OpenCV’s algorithm

In order to give the user control over the smoothness of the resulting curve they obtain,
we use a Python implementation of the Chan-Vese level set algorithm [58]. This method
of smoothing the curve ensures that reductions in the curvature are chosen such that they
have minimal costs to accuracy and that the contour remains true to the original image. We
allow users to specify both the error tolerance in pixels, as estimated from each iteration of
the Chan-Vese algorithm, and the parameter � which controls the contribution of the total
curvature of the boundary to the energy functional and thus the smoothness of the obtained
contour.

2.2. Going from curves to mesh

The second part of our software package consists of a script that takes vector based
graphics, specifically the “Scalable Vector Graphics” (SVG) standard, to obtain a discretized
curvilinear mesh that describes the boundary of the object of interest. The idea behind
vector graphics is to represent shapes in terms of control points of non-uniform rational
basis splines (NURBS). Only control points of the parameterized curves are stored while the
standard defines the basis polynomials themselves. The resulting curves can be represented
smoothly at any scaling or resolution of interest and can easily be mapped to the simulation
space using an affine transformation.

A variety of vector graphics file formats are available, several of which are proprietary.
We have chosen to implement our software using the SVG standard because it is a popular,
open-source standard and for its ease of use. SVG files are UTF encoded text files following
an XML schema, making them amenable to XML parsing methods. A particular benefit of
the SVG standard is that it is widely supported; if edge detection fails or gives insufficient

8



resolution, multiple vector graphics programs such as Inkscape or Adobe Illustrator may
be used to clean up or directly hand-draw the boundaries of interest from an image. The
standard has support both for Bézier curves as well as geometric primitives (rectangles,
triangles, etc.), and the current version of MeshmerizeMe utilizes the free path element,
which encodes curves as Bézier curves.

To reduce the need for additional configuration files, MeshmerizeMe has been built to
utilize the ‘input2d’ file format that is utilized by IB2d and IBAMR. This file is required,
and the MeshmerizeMe code expects the following variables to be defined in the input2d file:

� Lx, Ly: the length of the computational domain in the x and y direction, respectively.

� Nx: number of points in the x direction.2

Even if the user chooses to use a different CFD software for the simulation,MeshmerizeMe
can still be used to create the requisite mesh points. Strict adherence to the IB2d format
is not required. A minimal working example of the input2d file required for MeshmerizeMe
requires only four lines. The example below will create a mesh appropriate for a [0; 0:5] �
[0; 0:5] domain with a 64� 64 mesh.

Nx = 64

Lx = 0.5

Ly = 0.5

string_name = test

Please note that this minimal example is only sufficient for MeshmerizeMe. A simulation
for IB2d or IBAMR will require additional settings in the input2d file, such as the fluid
paramaters mu and rho and temporal information such as the desired time step dt and time
the simulation is to run. Any such additional settings may be present in the input2d file,
but will be ignored by MeshmerizeMe.

MeshmerizeMe will automatically compute the appropriate boundary point spacing of
∆s = 1

2
∆x, where ∆x = Lx

Nx
. We note that it is standard in the immersed boundary literature

to set the spacing between the immersed boundary points to half that of the spatial step for
the Navier-Stokes solver, ∆s = 1

2
∆x [14]. This choice of spacing allows the boundary points

to move independently while also restricting most of the flow between the points. Using
these parameters, the software will parse the supplied SVG file itself and extract the path
objects, splitting them up into individual Bézier curve objects. The control points are then
converted to the experimental coordinate system defined by Lx and Ly.

Let (t)2 R2 represent a particular Bézier curve. To create the mesh, we seek n param-
eters ftig with 0 � t1 < t2 < : : : < tn � 1 such that the distance between points on the
curve with these parameters is fixed:

d(ti) = k(ti+1)� (ti)k = ∆s; i = 1; :::; n� 1 : (1)

2MeshmerizeMe expects a square discretization, that is ∆x = ∆y, but does not require a square compu-
tational domain.

9



We utilize a gradient descent method to find these parameters. Specifically, we define our
cost function J(t) using the mean squared relative error of all d(ti) values (scaled by 1

2
to

cancel the power of 2 coming from the partial derivatives in (4))

J(t) =
1

2(n� 1)

n−1X
i=1

�
d(ti)�∆s

∆s

�2

; t =
�
t1 ::: tn

�
(2)

and minimize J(t) by iteratively updating t with a variable learning rate �:

tnew = told � �rJ(t) ; (3)

where

@J

@tj
=

8>>>>>>>>>>><>>>>>>>>>>>:

�1

(n� 1)(∆s)2

�
1

d(tj)
(d(tj)�∆s) h(tj+1)� (tj);r(tj)i

�
; if j = 1

1

(n� 1)(∆s)2

�
1

d(tj−1)
(d(tj−1)�∆s) h(tj)� (tj−1);r(tj)i

�
; if j = n� 1

1

(n� 1)(∆s)2

2664
1

d(tj−1)
(d(tj−1)�∆s) h(tj)� (tj−1);r(tj)i

� 1

d(tj)
(d(tj)�∆s) h(tj+1)� (tj);r(tj)i

3775 ; otherwise.

(4)
Here, we use the notation ha;bi to denote the inner product between a and b.
The number of points n to be found per path are estimated by dividing the arc-length

by the desired length ∆s. This may result in more dense than optimal spacing of points,
but in practice achieves sufficient accuracy. The error will depend on the curvature of .

We then evaluate our curve at the points ti obtained from this technique to determine
the discretized boundaries of interest. The produced Lagrangian mesh is output to a file
called fname.vertex where ‘fname’ is based on the value of string name taken from the
‘input2d’ file. The vertex file itself is a simple text file. The first line consists of an integer
giving the total number of mesh points and the following lines contain one mesh point each,
given as a space delimited pair of floats representing the x and y direction coordinates.

2.2.1. Distribution of Errors in Approximation

To test the relative accuracy of our script, we created 5,000 SVG files each containing
a randomly generated cubic Bézier curve. For purposes of uniformity during testing, each
curve was generated on a 1000�1000 pixel domain to be mapped onto a 1�1 mesh domain
using a 256 � 256 grid. All parameters were set to default values. A script was then run
to calculate the minimum, maximum, mean, and median relative errors for each curve. The
mean of the median relative error of curves in the script is 3.2% The middle 50% of median
relative errors is in the 2.6-3.5% range.See figure (3) for the distribution of the median
relative errors.

10



Figure 3: A distribution plot of median errors calculated from the meshes created for the error experiments
in Section (2.2.1).

Note that if a higher degree of accuracy is desired, the user is able to experiment with
different parameters that can influence the average error. MeshmerizeMe allows the user to
set both the learning rate as well as the convergence threshold of the mean squared error
(MSE) as command-line options when creating the mesh.

One potential limitation on the error is the method we have chosen to seed the curves.
Specifically, after reading the SVG our script merges all individual SVG path objects into a
single path object. This path object is then split into several sub-paths of equal arc-length.
Each of these sub-paths are seeded with n = Lsp=∆s points, where Lsp is the length of the
sub-path and ∆s is the desired Euclidean distance between mesh-points. For sub-paths with
very large curvature, this seeding method may overestimate the number of points necessary
for ideal discretization. In such cases, the user may re-run the MeshmerizeMe script with
the num-points flag to manually specify a lower number of points per sub-path. In our
experience, this is an unusual occurrence that can usually be solved by experimenting with
the num-points flag.

It should also be noted that our current algorithm assumes the object of interest is a
contiguous path, that is we assume the object can be represented by a single poly-Bézier
curve with at least geometric continuity. In the SVG file, this representation is not limited
to representation by a single path element. When the SVG file is parsed, all path elements
are merged into a single poly-Bézier path object. This object is then divided into several
sub-paths of approximately equal length which are then processed in parallel. If the object

11



of interest consists of two non-contiguous paths or multiple objects are represented in the
source SVG, the MeshmerizeMe script will report a large error resulting from the distance
between two sequential points on non-contiguous paths. In the presence of several non-
contiguous paths, the minimization algorithm will lead to a slight skewing of points towards
path boundaries.

3. Examples: Bringing everything together

We present several examples that illustrate the software’s ability to recreate complex
geometries. In each example, ContourizeMe is used to extract contours from images, Mesh-
ermizeMe is then used to compute the model’s discretized geometry. The flow within or
around the geometries is solved using an open-source implementation of IBM, either IB2d
or IBAMR. The following examples are illustrated:

1. Hemolymph flow through dragonfly wing veins (Section 3.1)

2. Lymph flow through a branching lymphatic capillary (Section 3.2)

3. Oscillatory flow past a starfish or array of starfish (Section 3.3)

In every example, we present the original image on which the computational geometry
is based, followed by images that illustrate how MeshmerizeMe computed its associated dis-
cretized mesh. Finally, we present computational results to illustrate successful integration
of the geometry into the IBM software.

3.1. IB2d: Dragonfly Wing Veins Example

For our first example, we chose a public domain image of a dragonfly wing shot with
a Canon EOS 5D Mark with a 100 mm lens [59]. For the purpose of running a tractable
fluid-structure interaction simulation, we cropped this image to a section of the wing and
manually occluded parts of the veins using the open source image manipulation software
GIMP [60]. Figure 4 shows the original image of the dragonfly wing and the region that was
chosen for numerical simulation.

12




